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Figure 4: Control flows of active operators inside a volume server.

mean function on the Taglt volume servers, we will need to move
entire datasets to the client, which may contain other attributes
such as salinity, etc. To address this, Taglt supports the format-
transformation operator. This can be achieved by appending an ex-
tra argument specifying a directory, in which the transformed files
will be stored. Internally, this works identically to Operatorgjppe, ex-
cept that the Active Manager now creates an output file (in the spec-
ified directory) per execution: ‘tagit-transform -outdir=/new
-tag-id=dataset -tag-val=Measurement -exec=gettemp’.
The output files generated by the gettemp program will appear in
the /new directory. This exploits the GlusterFS feature that each
brick mirrors the entire directory tree but can also project newly
created files in the local brick to clients. Only error codes from the
runs are returned to the client. Note that the active operators in
Taglt aim to reduce the data movement between the storage system
and the client by providing a convenient framework for server-side
data reduction. Applications may still need to perform additional
operations, such as aggregation or sorting, to complete the analysis
that requires extra communications, e.g., data shuffling.

We have extended Operatorg;py to interface it with the index
services in order to provide more advanced capabilities. Suppose a
user wants to extract the metadata of searched file collections, run
the operators on them, and index the results after the operators are
executed. For that, the user can specify the ‘~index’ argument to
the tagit command. In this context, the Active Manager buffers
the output from each execution, as it does with a Simple Execution.
However, in addition, each line of the output is parsed as a key-
value pair (e.g., dimension=5) and the parsed pairs are tagged,
i.e., added to the index shard and set as extended attributes to the
input file(s). This process is depicted in Figure 4(b) and referred as
Operatorggyanced-

Security If users use active operators to execute untrusted bi-
nary code, the volume server can compromise the performance
and security of the entire file system. To preclude malicious and
buggy behaviors in untrusted user programs, the IPC Manager can
manage a quarantined environment to run user supplied programs.
Specifically, Taglt can adopt the Linux Container [7] for an isolation
environment, and create an unprivileged container (i.e., lacking the
superuser privileges) without any external network connections.
We currently dedicate two CPU cores and 4GB memory to the con-
tainer from a 12 core, 64GB volume server in our testbed (Table 1).
Further exploration for building a secure environment is beyond
the scope of this work.

Automatic Metadata Extraction Although Taglt can perform
Operatorygyanced automatically for all the files in the file system,
the sheer volume of data in extreme-scale file systems will over-
whelm the file servers. Instead, Taglt allows users to trigger the
automatic metadata extraction only for file collections that the user

H. Sim et al.

has deemed worthy. Specifically, a user can register a directory for
automatic metadata extraction with an attribute such as ‘tagit-
autoindex /some/dir’. After the directory is registered, Taglt
automatically extracts metadata from all the files with specific file
format extensions such as hd5 and nc under the directory and
indexes them. Internally, every volume server in Taglt maintains
additional records of ‘{extension, extractor}’ and the list of
registered directories. When this feature is enabled, on every file
close operation, Taglt additionally checks whether automatic extrac-
tion should be triggered. It is triggered only if the file is modified,
the file has a known-type extension, and, lastly, one of the parent
directories appears in the list of automatic extraction directories.
If so, the file is enqueued to the extraction queue. An extraction
helper thread (per volume server) applies the extractor program
on the queued files.

The automatic metadata extraction framework also helps users
keep the tags (or attributes) always up-to-date, i.e., consistent to
associated data files. Specifically, if an attribute P has been extracted
from a file F via the automatic metadata extraction framework, P
becomes inconsistent if the contents of F change. Taglt has an
elegant way to address this by virtue of the registration mechanism
outlined above. Since users need to register a directory for Taglt to
automatically extract the metadata, whenever the contents of the
file F change, Taglt will rerun the extractor program and update
P. As a result, the contents of the file F and the associated attribute
P will remain consistent without any user intervention.
Dynamic Views A dynamic view provides a way to the users to
save their search queries, and is created with the tagit command
by passing an additional ‘-create-view’ argument and a view
name, for any file search request. Upon receiving the request, the
Dynamic View Manager writes the dynamic view information to a
temporary data file, view list. The view list file is local to the client,
i.e., maintained on a per-client basis. After its creation, a new virtual
directory appears under /.meta/views. The /.meta is a root of
the virtual entries (i.e., temporarily existing only in memory) in
GlusterFS, similar to /proc in Linux. Each time a user reads the
/ .meta/views directory, the Dynamic View Manager dynamically
generates directory entries based on the view list file. Also, each
directory entry is associated with a file search query that is specified
during the creation of a view. Correspondingly, when a user reads
a particular dynamic view directory, the Dynamic View Manager
performs the distributed query through the IPC Managers. With the
result of the query (list of files), the Dynamic View Manager creates
symbolic links pointing to the search result files. This process,
and dynamically generating directory and symbolic links, happen
solely on the client, without burdening the file servers. Further, all
directories and symbolic links under /.meta/views are transient,
without occupying any memory or disk space when they are not
accessed. Note that the dynamic view is similar to Views in a
relational database [25]. In fact, the dynamic view in Taglt can be
seen as a database view that is externally managed and wrapped
by a file system interface.

Although, a dynamic view only exists temporarily by default
on a single client, there exist cases in which certain views may
need to be kept permanently and globally (e.g., sharing the view
between multiple clients). In Taglt, users can create permanent
dynamic views, and make an existing dynamic view permanent



Taglt: An Integrated Indexing and Search Service
for File Systems

SC17, November 12-17, 2017, Denver, CO, USA

8000 40000 2000 3000
GlusterFS —— GlusterFS —— GlusterFS —— 2500 GlusterF'S ——
6000 | _Tagit-Sync == 30000 | _Taglt-Sync == 1500 | Taglt-Sync == Taglt-Sync ==
%) Taglt-Async s %) Taglt-Async s 1) Taglt-Async s ) 2000 | Taglt-Async s
%4000 % 20000 % 1000 % 1500
- 2000 - 10000 - 500 - 1222
0 0 0 0
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Number of clients Number of clients Number of clients Number of clients
(a) SSD — create (b) SSD — unlink (c) SSD — mkdir (d) SSD — rmdir
8000 40000 2000 3000
GlusterFS —— GlusterF'S —— GlusterFS —— 2500 GlusterFS ——
6000 | _Tagit-Sync === 30000 | _Tagit-Sync == 1500 | Taglt-Sync == Taglt-Sync ==
%) Taglt-Async s ) Taglt-Async mmmm %) Taglt-Async 2000 | Taglt-Async s
%4000 % 20000 % 1000 % 1500
- 2000 - 10000 - 500 - 1222
0 0 0 0
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Number of clients

(f) HDD — unlink

Number of clients
(e) HDD — create

Number of clients

(h) HDD — rmdir

Number of clients

(g) HDD — mkdir

Figure 5: Performance overhead of metadata indexing in the file system. ndtest [9] benchmark was used to generate metadata-intensive
workloads. We used two different storage volume configurations, with SSDs ((a)—(d)) and with HDDs ((e)-(h)), to observe the performance

impact of storage device characteristics.

as well. All permanent views appear globally on all clients. This
is achieved by keeping the list of the permanent dynamic views
using a special hidden file (/. _views) inside the file system. The
permanent dynamic views appear under /.meta/views/sticky,
and are handled similarly as the (temporary) dynamic views. Note
that, in this context, a client only needs to fetch view names and
search queries from the file server upon the execution of a user
request. Once the name and search query of a permanent dynamic
view are acquired, all directories and symbolic links are processed
on a single client as for the (temporary) dynamic views.

4.3 Discussion

The techniques used in Taglt are applicable to other PFS such as
Lustre [8] and Ceph [45], with appropriate modifications. Taglt
mainly requires modest computational resources on the PFS servers
to run the lightweight database shards and active operators. For
example, Ceph supports a key-value store, RocksDB [12], for sup-
porting atomic object writes, which Taglt can use for indexing
and other operations. Similarly, basic tagging can be supported
as before. One consideration is that PFS with centralized servers
already suffer from performance bottlenecks (e.g., Lustre, which is
moving to multi-server DNE [2]). Thus, advanced Taglt services
such as indexing of the tags can (should) only be run on PFS with
multiple, distributed metadata servers that can handle the extra
load. Finally, to support active operations for striped files, e.g., on
Lustre or GPFS [42], we will need to aggregate the stripes from the
backend servers. This requires additional communication and data
movement between the servers, and may impact performance.

5 EVALUATION

Implementation Taglt has been implemented atop GlusterFS 3.7,
an open-source distributed file system. We extended the transla-
tor framework in GlusterFS to implement index database services
(index shard) and science discovery services (active operator and
dynamic views). On the server side, an index shard translator is
implemented using a light-weight database, SQLite [16]. On the
client side, dynamic views are implemented in the meta translator,
a virtual file system framework in GlusterFS. Taglt command-line

utilities are implemented using the GlusterFS library (glapi). For
evaluating Taglt, we consider two implementations—TaglIt-Sync
and Taglt-Async. In Taglt-Sync, the index database is synchronously
updated, while in Taglt-Async, a dedicated thread is spawned to
update the database asynchronously (§ 3.3).

Testbed Table 1 shows our testbed, where we used a private
testbed with 32 nodes connected via 1 Gbps Ethernet, configured as
16 servers and 16 clients. For a realistic performance comparison,
we used both synthetic and real-world workloads. For synthetic
workloads, we used mdtest [9] and IOR [6] benchmarks for file
metadata and file I/O intensive workloads, respectively. For a real
workload, we used real-world scientific datasets such as the AMIP
atmospheric measurement datasets [27]. All experiments were re-
peated six times, unless otherwise noted, and we report an average
with a 95% confidence interval.

Server (16) Client (16)
CPU 12-core Intel Xeon E5-2609 8-core Intel Xeon E5-2603
RAM 64 GB 64 GB
os RHEL 6.5 (Linux-3.1.22) RHEL 6.5 (Linux-3.1.22)
Network | 1 Gbps Ethernet 1 Gbps Ethernet
Storage Intel 240 GB SSD, Seagate 1 TB HDD | N/A

Table 1: Testbed specification.

5.1 Metadata Indexing Overhead

In our first test, we study the performance overhead of the inte-
grated index databases of Taglt on the GlusterFS volume servers,
while servicing file I/O operations.

Metadata-Intensive Workloads Figure 5 shows the performance
comparison of Taglt and GlusterFS for metadata-intensive work-
loads, including file operations (e.g., create and unlink) and direc-
tory operations (e.g., mkdir and rmdir). We increase the number of
clients from 1 to 16. In order to see the impact of the storage device
characteristics, we considered both SSD and HDD volume server
configurations.

Figures 5 (a)-(d) show the results with the SSD volume configu-
ration. In file operations (Figure 5 (a)-(b)), we see that both Taglt
and GlusterFS scale linearly with respect to the number of clients.
Further, we can see that the throughput of Taglt-Async is only
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Figure 6: Experiments with an overloaded server. (a) shows the
normalized throughput, and (b) depicts queueing delays of database
update requests.

4% lower than the throughput of GlusterFS, on average. However,
Taglt-Sync exhibits a noticeably decreased throughput compared
to GlusterFS, due to frequent database file sync operations. For
directory operations (Figures 5 (c)—-(d)), Taglt-Async and GlusterFS
scale only up to 8 clients. This can be attributed to the fundamental
design of GlusterFS, in which all directories are replicated in every
volume server (§ 2). Figures 5 (e)-(h) show the results with the
HDD volume configuration. Not surprisingly, we have similar ob-
servations as in Figures 5 (a)—(d), except that the throughput under
Taglt-Sync are too low to be discernible in the graphs.

Impact of Server Congestion The preceding experiments were
conducted with the number of clients being less than or equal to
the number of servers. In our next test, we consider a case in which
servers are overloaded by more clients. To create the overloaded
condition, we increased the number of clients from 1 to 16 while
keeping a single server. Each client concurrently creates 10,000 files
in its own directory.

In Figure 6 (a), we observe that Taglt-Sync does not scale with

more than four clients. In contrast, Taglt-Async scales similarly to
GlusterFS. However, with 16 clients, we notice Taglt-Async shows
lower throughput than GlusterFS. This is because the database
update thread in Taglt (§ 3.3) is overloaded and cannot keep up with
the speed of incoming requests. This can introduce a non-negligible
delay for updating the database, which in turn may result in an
inconsistency between the file system and the index database (§ 3.3).
To investigate the delay, we measured database update latencies of
the first 10,000 create requests. Figure 6 (b) presents the delays with
respect to the request sequence in time-series. We observe that, for
up to eight concurrent clients, the delays are under 1 millisecond for
all requests. However, the delay increases up to above 20 seconds
with 16 clients. Overall, Taglt-Async performs similar to GlusterFS,
and it is important to properly estimate the maximum server load
to keep the metadata index database consistent.
I/0 Intensive Workloads Figure 7 shows the performance over-
head of metadata indexing for representative I/O patterns for scien-
tific applications. In specific, we perform our tests for both a single
shared file I/O model (N processes reading and writing to a single
file, N1-Read and N1-Write in the figure) and a per-process file I/O
model (N processes reading and writing N files, NN-Read and NN-
Write in the figure). For the N1 tests, a single shared file is created
for 16 clients, and each client concurrently appends 4 MB at a time
until the aggregate size of file operations per client reaches 1 GB
(16 GB total). For NN tests, each client writes in its own file sepa-
rately. Overall, for both tests, we see little performance degradation
due to the metadata indexing in Taglt.
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Figure 7: Performance comparison of GlusterFS and Taglt-Async
for parallel I/O workloads. IOR benchmark [6] was used to generate
N1 and NN workdloads.
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Figure 8: Metadata indexing overhead of Taglt for a large deploy-
ment. F- and D- denote the file and directory operations, respec-
tively.

Crash Recovery Taglt recovers from a server failure by repopu-
lating any lost updates to the index database. From a single server
failure, the recovery program of Taglt can recover 351.95 files per
second, e.g., for the lost metadata updates of 10,000 files, Taglt can
repopulate the local index shard within 30 seconds.

Indexing Overhead at Scale Here, we evaluate the performance
of Taglt on a large cluster to study how Taglt performance scales
with an increased number of volume servers and clients. The testbed
cluster consists of 104 diskless nodes, each of which is equipped
with two four-core Intel Xeon E5410 processors (total eight cores)
and 16 GB RAM. The nodes are connected via an infiniband network
(Mellanox MT25208, 10Gbit/sec). We configured the file systems
(GlusterFS and Taglt-Async) with 80 volume servers using 80 phys-
ical nodes. A memory file system (tmpfs) was used as a backend
storage on the volume servers. The rest of the 24 nodes were used
as clients. To evaluate the metadata indexing overhead, we ran the
mdtest benchmark by spawning two processes on each client node
(total 48 client processes). Figure 8 shows the result with seven dif-
ferent metadata operations, namely create, stat, read, and remove
(unlink) for files and directories (with the exception of reads for
directories). F- and D- denote file and directory operations, respec-
tively. Each test was run five times, and since there was very little
variation between the runs, we only present the average. For each
operation, the Taglt-Async throughput is normalized to the Glus-
terFS throughput. We observe that the indexing overhead of Taglt
is less than 5% in all cases, except for the file remove operation
(F-remove) where the overhead is around 10%. Since file remove
(unlink) is the fastest metadata operation in GlusterFS (Figure 5),
its indexing overhead is more discernible than other operations.
Overall, this result is consistent with our previous observation, and
the indexing overhead of Taglt is not affected by the cluster scale
due to the shared-nothing architecture.

5.2 File Search Performance

In our next tests, we evaluate the effectiveness of file searches in
Taglt compared to an external database approach. Since SQLite does
not support the server mode, 16 MySQL servers (identical to the
number of volume servers in Taglt) are used to evaluate the external
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Description Attributes Tables Results (#)
Q1 | Locate files and directories with pathname containing ‘never-existing’. name FILE 0
Q2 | Count the number of all regular files under ‘/proj’, owned by a user. path, mode, uid FILE, xXNAME, xDATA 1
Q3 | Find regular files with a “.mpi’ extension owned by a group, under ‘/proj’. | path, name, mode, gid | FILE, xNAME, xDATA 3
Q4 | List all files owned by a group. path, mode, gid FILE, xXNAME, xDATA 647
Q5 | List all regular files which have been created in the last 24 hours. path, mode, ctime FILE, xXNAME, xDATA 50,552

Table 2: Various file search queries to measure the query performance. Attribute column shows metadata required to answer the query, while

table column shows database tables that hold the metadata columns.

Number of Clients 1 2 4 8 16

System MySQL  Taglt | MySQL Taglt | MySQL Taglt | MySQL Taglt | MySQL Taglt

Total Runtime (s) 2.780 0.840 3.716 1.580 7.689 3.026 19.659 5.843 41.846 11.392

01 Avg. Latency (s) 0.043 0.016 0.050 0.018 0.074 0.033 0.087 0.061 0.154 0.152

95t Percentile 0.056 0.018 0.085 0.033 0.175 0.063 0.424 0.124 0.866 0.249

99" Percentile 0.059 0.024 0.086 0.035 0.191 0.064 0.429 0.125 0.875 0.250

Total Runtime (s) 15.499 6.840 68.599  13.471 165.501  26.408 401.340 53.409 815.478  103.839

02 Avg. Latency (s) 0.306 0.131 1.202 0.164 0.909 0.292 1.640 0.542 9.885 1.192

95t Percentile 0.309 0.136 1.366 0.268 2.809 0.530 6.167 1.075 16.043 2.125

99t Percentile 0.311 0.158 1.398 0.272 4.122 0.542 11.034 1.079 16.654 2.160

Total Runtime (s) 6.052  12.927 6.918 25.537 8.783 51.731 17.759 98.743 38.110 190.289

03 Avg. Latency (s) 0.032 0.064 0.034 0.097 0.038 0.169 0.051 0.216 0.077 0.613

95t percentile 0.121 0.257 0.132 0.508 0.171 1.027 0.347 2.041 0.736 3.843

99t Percentile 0.121 0.259 0.146 0.520 0.183 1.056 0.368 2.099 0.783 4.108

Total Runtime (s) 16.711 8.508 67.476  16.278 161.971  32.474 409.635 64.828 795376  131.545

04 Avg. Latency (s) 0.320 0.163 1.185 0.206 0.987 0.293 1.428 0.855 7.776 1.632

95t percentile 0.325 0.168 1.339 0.318 2.724 0.635 6.044 1.427 15.646 2.691

99t Percentile 0.356 0.195 1.388 0.329 4.097 0.819 11.183 1.710 16.258 3.277

Total Runtime (s) 32.390 49.420 128.516  50.727 326.109  76.295 803.266  153.888 1512.220  312.241

05 Avg. Latency (s) 0.387 0.703 1.329 0.701 1.127 1.106 1.691 1.868 9.247 3.594

95t Percentile 0.647 0.905 2.525 0.912 5.540 1.603 10.832 2.949 29.763 6.089

99t Percentile 0.649 0.917 2.664 0.953 7.589 1.756 22.368 3.398 30.898 6.484

Table 3: Query performance under Taglt vs. the crawling approach with 16 MySQL servers.

database approach. Note that, in Taglt, such external servers are not _ MySQL-16 Taglt
.. . Database Size 197139 MB | 1770.08 MB
needed, because the database is integrated into the file system. We Crawling/Update Time | 9610 min N/A

used the same server machines with SSDs for both cases (Table 1),
and all SSDs were formatted with the XFS file system. For a realistic
workload, we used a snapshot of the Spider file system [38], taken
on July 1, 2015. The snapshot contains information on pathnames
and attributes of 1,303,156 files and 3,294 directories.

Index Database Population Overhead Taglt populates index
shards during file operations, whereas the external database ap-
proach has to perform a periodic update. Specifically, the external
database approach requires the following steps. First, the entire
file system has to be scanned to generate a current file system
snapshot. Second, databases are populated with the file system
snapshot. In our experiment, we developed an in-house program to
take a file system snapshot using find and stat system utilities
and populate the databases, although the scanning process could
be expedited [34]. The 16 MySQL servers of the external approach
were populated in parallel from 16 clients.

Table 4 compares database management overheads for Taglt
and the external database approach in terms of database space
and update overheads. Both approaches use the similar amount
of storage space for storing the databases. Specifically in Taglt,
the index shard per server only requires 110.63 MB. To build its
database, the external database approach takes about 96 minutes
to populate the index; 93 minutes to crawl the file system and
generate a file system snapshot, and about 4 minutes to update the
16 MySQL servers. Although the database population process could
overlap with the file system crawling process, its improvement

Table 4: Database size and update time under Taglt vs. the crawling
approach with 16 MySQL servers.

would be minimal because the file system crawling time is dominant
in the entire database population time. Such long delays can lead
to inconsistency between the file system and the database and are
clearly undesirable, especially in large-scale file systems.
File Search Performance To compare the file search perfor-
mance, we used the databases that have been populated in the pre-
vious experiment, and tested with five realistic stat-based queries
for file searches as shown in Table 2. Note that these tests are also
representative of tagging-based file searches. To measure the query
performance, we wrote a C program that repeatedly executes a
given SQL query 50 times. To test a multi-user environment, we
measured the performance by increasing the number of clients to
16. We also used a warm-up period of a minute for each query test.
Table 3 shows the total runtime and the summary of individual
database request latencies for each case. We observe that Taglt can
process Q1 query about three times faster than MySQL. Note that
Q1 is a simple query that requires a full scan of an entire column
without resorting the database index. In our experiments, SQLite
could process this type of query faster than MySQL. For Q2, Q4, and
Q5, Taglt also outperforms MySQL. We see that Taglt outperforms
MySQL by a factor of 7, when using 8 or more clients.

In order to further investigate the lower query performance of
MySQL for Q2, Q4, and Q5, we analyzed the query load distribution
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Figure 9: Distributions of records for MySQL and Taglt. The record
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the page limitation.

Systems | r(Q1) r(Q2) r(Q3) r(Q4) r(Q5)
MySQL 2.678 | 53.638 2.188 | 52.456 | 99.731

Taglt 0.702 6.475 11.790 8.211 18.139
Table 5: Coefficients of linear runtime functions with the num-
ber of clients as an explanatory variable. In all cases, R? values are
greater than 99%.

across servers. In particular, we counted the number of processed
result records of each query in all MySQL servers. Surprisingly,
we found that MySQL exhibits a heavily skewed distribution of
the result records across servers for these queries (Q2, Q4 and Q5),
as shown in Figure 9. In Figure 9, we can clearly see that there
is a severe load imbalance across the 16 MySQL servers in the
external database approach. For Q4, 562 records (total 647) are
processed on a single server, and similarly for Q5, 35,150 result
records (total 50,552) are processed on a single server. Moreover,
for Q2, a single server had all matching 124 records. The reason for
this heavily skewed record distribution can be attributed to the way
that the databases are populated. In the external database approach,
records are distributed based on the order in which they appear
in the snapshot file. The snapshot file is created by crawling the
file system tree, and files in the same directory are likely to appear
continuously. In contrast, Taglt evenly distributes the records to all
16 volume servers because the distribution of the records follows
the file distribution policy of GlusterFS, i.e., a distributed hash table.

Such a skewed distribution of records not only negates the benefit
of the parallel query processing, but also significantly slows down
the overall processing time. Note that a single query processing
internally involves communication with all 16 database servers
due to the nature of the sharded database architecture. Thus, a
query cannot be answered until the slowest server completes its
processing. We can observe this problem in Table 3, particularly by
comparing average latencies with 95t and 9oth percentile latencies.
For instance, in MySQL with 8 clients, ggth percentile latencies are
6.7%, 7.8% and 13.2Xx higher than the average latencies for Q2, Q4
and Q5, respectively. For Q3, MySQL processes faster than Taglt.
It is because MySQL can prune the result record set based on the
file name (‘% .mpi’) prior to other conditions, which alleviates the
negative impact of the skewed record distribution.

We also compared the scalability of query processing perfor-
mance under increasing number of clients. For a fair analysis, we
used a simple linear regression with the runtime measurements in
Table 3. We compared the slope of the fit line for each query. Table 5
shows the coeflicient (r), the slope of the fit line, of the runtime
function with the number of clients as an explanatory variable.
Note that a higher r value implies that the runtime increases more
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Figure 10: Query performance scaling under increasing volume
servers and 105 million files.

sharply as the number of clients increases. We observe that for
Q1, Taglt and MySQL have similar slopes, however for Q2, Q4 and
Q5, MySQL shows much higher slopes than Taglt, implying that
MySQL scales worse than Taglt. For Q3, we see that MySQL scales
better than Taglt.

Search Performance at Scale Next, we evaluate the overhead
of query broadcasting (§ 3.4). In particular, we build the file system
with 96 volume servers, and populate them with 105 million files
from the Spider II snapshot file. We perform this experiment using
48 nodes of the Rhea cluster at Oak Ridge Leadership Computing
Facility [11]. After populating the file system, the overall database
size is 140 GB (u = 1.45 and o = 0.07 across 96 volume servers). We
execute Q1, Q2, and Q3 in Table 2 from a single client while varying
the number of volume servers from 2 to 96. Note that for Q3, the
number of resulting records is 4,766 in this setup. Figure 10 shows
the result. We observe that executing Q2 and Q3 takes substantially
longer than Q1, mainly because of the difference in the complexity
of the queries. Q1 only needs to scan a single column (path) from
a single table, whereas Q2 and Q3 require scanning and joining
multiple database tables. In addition, for all queries, the benefit
of sharded architecture outweighs the overhead of broadcasting.
Using linear regression, we find that adding a single volume server
merely increases runtime by 0.013X, 0.018%, and 0.016X for Q1, Q2,
and Q3, respectively. For instance, executing Q3 with 96 volume
servers takes 6.1 seconds, which is only 1.6 seconds more than the
runtime with two volume servers (4.5 seconds).

5.3 Science Discovery Services

Evaluation of Operatorgjn,le To study the effectiveness of ac-
tive operators, we used the query of computing the decadal average
temperature of the AMIP atmospheric measurement datasets, com-
posed of 132 1.2 GB netCDF files (total 150 GB) (§ 4.2). We wrote
a dedicated program (operator), using the netCDF library, which
calculates an average of the temperature variables in a netCDF file.
We execute the program using two different methods, Offline and
Taglt. In Offline, the program is run on a client and reads files from
the file system. In Taglt, we offload the execution of the program
using the operator framework. In Offline, we increase the number
of threads from 1 to 8 to observe the impact of parallelism. We also
evaluated the impact on the performance of normal I/O operations
when they are performed during the program executions.

Figure 11(a) shows the results without any foreground I/O. We
observe that for Offline, the run time decreases as we increase the
parallelism. However, this happens only up to 4 clients. With 8
clients, the effect of parallelism almost disappears because of the
I/O contention between the threads. In contrast, we see that Taglt
performs noticeably faster than Offline. Note that Taglt not only
utilizes multiple file servers to run the operators, but also performs
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Figure 11: Performance impact of active operators in Taglt. (a) Per-
formance under Offline vs. Taglt. (b) Impact on foreground I/O oper-
ations. TaglIt-C and Taglt-W show the cold and warm volume server
cache case, respectively.

near-data processing, minimizing data movement between the file
servers and the client. Moreover, due to the shared nothing archi-
tecture of Taglt, there is little I/O contention between the operators
running on the different servers. Figure 11(b) shows the results
when either Offline-1 (one thread) or Taglt-C runs concurrently
with a foreground I/O operation. To understand the impact from
overlapped executions, we launch a separate client that either reads
or writes a 1 GB file sequentially. Under the read workload with
Offline-1, the I/O bandwidth drops by about 30%. However, under
the write workload, there is little impact on the foreground I/O both
from Offline-1 and Taglt-C. This is because the foreground write
operations are cached by the client before reaching the servers, and
are not directly affected by the server-side contentions.
Evaluation of Operator,gqyanced Next, we evaluate the use of
active operations to extract and index the metadata from scientific
data (e.g., netCDF). We study the performance impact of performing
the additional indexing on the file servers. Specifically, we compare
the performance of the following two cases. In the Operatorg;npie
case, the file server executes a program that calculates a statistical
summary (min, max, mean, median, etc.) from a netCDF file. In the
Operatorygyanced case, the file server executes the same program,
but the result is also indexed as attributes of the netCDF file. This
involves setting extended attributes and adding records to the index
shard. We used the same AMIP dataset (132 netCDF files, 150 GB)
as before. Despite the additional processing on the file servers,
Operatorggyanced Tuns 10% faster (1.45 s vs 1.65 s on average across
6 runs) than Operatorgimyl.- This is because processing the results
locally on the file servers is faster than gathering all results on the
client. Note that, in the Operatorg;,pje case, the raw results are not
processed further, but are simply aggregated and displayed to the
user on the client.

In Operator,;gyanced> indexing the extracted metadata from the
AMIP datasets increases the index database size. The raw data size
of the extracted metadata (31 attributes) from a single netCDF file
is about 1.5 KB and, with 132 netCDF files, the total database size
increases by 631 KB on 16 volume servers. That is, each netCDEF file
increases the size of the index database by only about 3.2 KB. For a
larger scale test, consider the project directory snapshot (1.3 million
files) from the Spider file system used in § 5.2, which includes 787
complex files (631 netCDF, 180 FIT, and 4 HDF5 files). Suppose that,
for this experiment, all such files are indexed after extracting 31
metadata attributes. Then, the total index database size will increase
only by up to 2518.4 KB (787 x 3.2), or 157.4 KB per index database
shard, compared to the original database size (1770.08 MB, refer to
Table 4). While this is promising, it is also dependent on the data
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collections and their metadata content. Therefore, we will need to
be judicious, and only extract and index metadata for data that the
user deems important.

6 RELATED WORK

Managing metadata in a large-scale file system has been the fo-
cus of many works. GIGA+ [39] is a directory service that can
be stacked on any parallel file systems. FusionFS [49] employs a
distributed key-value store for a scalable metadata management.
Recently, DAOS [35] proposes a new parallel file system architec-
ture based on a distributed object-based storage, to address the
limitations of the traditional POSIX interface in emerging extreme-
scale platforms. Although these systems are scalable and alleviate
the metadata overhead of file systems, unlike Taglt, they do not
directly implement searchability that requires further indexing and
management of metadata, as we have previously explained in § 3.1.

File system searchability has mostly been achieved by using ex-
ternal applications in a post hoc fashion [4, 36]. However, keeping
the search index up-to-date with graceful performance degrada-
tion is non-trivial even in a single-user system [23]. The research
community generally anticipates magnified challenges for main-
taining a search index for large scale file systems. Spyglass [34]
reduces the crawling overhead, but the solution is specialized to
the architecture of the NetApp WAFL file system [31]. In contrast,
Taglt addresses such shortcomings and provides a scalable data
management service. VSFS [47] offers a searchable FUSE-based file
system interface that sits on other parallel file systems, and provides
a namespace-based file query language, similar to Semantic File
System [29]. However, VSFS still maintains a metadata index out-
side of the file system, and thus requires its own data distribution
and servers to scale [48]. The integrated design of Taglt precludes
such extra servers and custom distributions. HP StoreAll Express-
Query [32] is a production archival storage system that provides a
rich metadata service, using a distributed database [26]. As before,
the use of a decoupled metadata database is a limiting factor in
this system as well. Moreover, these systems do not support ad-
vanced data management services (§ 4). Apache Lucene/Solr [14]
supports automatic metadata extraction for well-known file types.
However, the system also requires file system crawling due to its
decoupled architecture. SciDB [13] is a database system specialized
for scientific applications, and provides pre-processing of datasets,
such as transporting a vector-based dataset. DataHub [24] offers
github-inspired scientific data management and sharing, based on
database techniques. However, both designs require using a custom
interface instead of a file system, which creates an unnecessary and
impractical hassle for users. In contrast, Taglt provides both search-
ability and pre-processing within the file system via the familiar
command line interface.

7 CONCLUSION

In this paper, we have presented a case for tightly integrating data
management services within file systems to enable rich search
semantics therein. Traditionally, such services are provided via
database catalogs external to the file system, which is not sustain-
able in the face of emerging data generation trends. Taglt maintains
a scalable and consistent metadata index database inside the file
system and offers advanced data management services including
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tagging, search, and active operations, to expedite scientific discov-
ery processes. Taglt also features an easy-to-use user-interface; a
dedicated command line utility provides similar semantics of the
traditional find utility, and the dynamic view organizes data collec-
tions of interests in an intuitive directory hierarchy. Our evaluation
with Taglt implemented atop GlusterFS shows that Taglt is viable
and outperforms an external data management approach, without
the need for deploying any additional resources.
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